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Abstract

Control system design involves input/output (IO) selection, that is, decisions on the number, the place, and the type of actuators and
sensors. The choice of inputs and outputs a!ects the performance, complexity, and costs of the control system. Due to the
combinatorial nature of the selection problem, systematic methods are needed to complement one's intuition, experience, and physical
insight. This paper reviews the currently known IO selection methods, which aids the control engineer in picking a suitable method for
the problem at hand. The methods are grouped according to the control system property that is addressed and applications are
grouped according to the considered control systems. A set of criteria is proposed that a good IO selection method should possess. It
is used to assess and compare the methods and it could be used as a guideline for new methods. The state of the art in IO selection is
sketched and directions for further research are mentioned. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Control system design could be split into the following
six steps. First, the control goals are formulated. This
involves choosing and characterizing the exogenous vari-
ables w and choosing and imposing requirements on the
controlled variables z, see Fig. 1. The control goals
should be quanti"ed in the time and/or frequency
domain. The choice of z may be a!ected by the outcome
of the other steps of control system design, like the choice
of the plant model G in the second step of control system
design. The techniques used in other steps also determine
the model type, e.g., linear or nonlinear, time-invariant or
time-varying, physical principles or black box. In the
third step, the control structure is selected. Fourth, the
controller K is designed. The choice of the design method

(PID, LQG, adaptive control, H
=

optimization, etc.)
depends on aspects like the control goal, model accuracy,
and restrictions on the implementation. Fifth, the
closed-loop system is evaluated via simulations or pilot
plant experiments. In the last step, the controller and
hardware like sensors, actuators, and control processors
are implemented in the real plant. Iterative re"nements of
these steps are often necessary, e.g., meeting the control
goal might call for a more accurate model or a modi"ca-
tion of controller parameters.

The third step of control system design, i.e., control
structure selection, is usually split into two separate
problems which are then solved successively: input/out-
put (IO) selection, which is the focus of this paper, and
control con"guration (CC) selection. Approaches to
solve IO and CC selection jointly are seldomly encoun-
tered in the literature. Here, the IO selection problem is
posed as follows:

Select suitable variables u to be manipulated by the
controller (plant inputs) and suitable variables y to be
supplied to the controller (plant outputs).

Both the inputs and the outputs of G are divided into two
classes, but in this paper the terms `inputsa and `out-
putsa are reserved for u and y. Each combination of
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Fig. 1. General control system set-up; plant G, controller K, exogenous
variables w, controlled variables z, manipulated variables (inputs) u,
and measured variables (outputs) y.

inputs and outputs is called an IO set. CC selection is
only relevant for decentralized control, i.e., for controllers
with one or more entries that are structurally zero. Estab-
lishing which outputs in y are used to determine each
input in u is often called partitioning or pairing in case of
a diagonal controller. Surveys of CC selection methods
can be found in Cao (1995, Chapter 1), Kinnaert (1995),
Van de Wal and De Jager (1995), and Van de Wal (1995).

IO selection involves selecting an appropriate number,
place, and type of actuators and sensors. In general, IO
selection is performed prior to the physical realization of
the plant, based on a plant model and a proposed set of
candidate actuators and sensors. Sometimes it may be
desirable to perform IO selection for a plant that is
already equipped with actuators and sensors. Reasons
for not using all the available actuators and sensors could
be the reduction of the control system complexity and the
costs of operation and maintenance. Also, devices may be
present that cannot be used at the same time, e.g., two
valves that in#uence exactly the same #ow. This can
occur because di!erent plant con"gurations, e.g., at star-
tup and at full load, require di!erent instrumentation. It
is also possible to study the bene"ts of sensors and
actuators besides or instead of those available. This situ-
ation occurs when new sensor or actuator technology
becomes available, when an existing plant needs a re"t,
or when a plant has to meet tighter speci"cations.

IO selection involves more than actuator and sensor
selection. Apart from physically sensed variables, y may
include variables derived from the sensed variables (e.g.,
a di!erentiated version of a sensed position) and com-
manded setpoint or tracking variables. In analogy, apart
from physically actuated variables, u may include refer-
ence variables for other control system parts. Despite
a slight abuse in terminology, the outputs y will some-
times be called measured variables, whereas the inputs
u will often be called manipulated variables. IO selection
may also be used to decide on particular controller re-
strictions which will be called `controller schemesa.
These re#ect the decomposition of the controller into
di!erent units, like feedback, feedforward, and cascade
loops. In case of the general control system set-up, dis-
tinct controller schemes result in distinct plants G and
distinct IO sets. Distinct candidate controller schemes

can also be incorporated simultaneously into G. The
majority of the currently known IO selection methods
cannot be used for systems giving rise to a decentralized
K in Fig. 1, due to the restriction to centralized control-
lers. An IO selection method that also handles decentra-
lized controllers K in Fig. 1 could be used to solve IO and
CC selection jointly, but such methods are rare in the
literature.

Sensible IO selection is important. First, the IO set
may limit the performance, which may not be overcome
by advanced controller design. For instance, the IO set
may give zeros in the right half-plane, imposing an upper
bound on the bandwidth. Second, the IO set determines
aspects like reliability and the expenses of hardware,
implementation, operation, and maintenance. In this re-
spect, a small IO set (i.e., an IO set with a small number of
inputs and outputs) is often preferred to a large IO set.
Especially in the context of fault-tolerance, redundancy
of actuators and/or sensors may also be desired. This
should then be incorporated in the selection. Normally,
the selection can be used to "nd IO sets that show no
redundancy at all, providing information about the per-
formance losses due to instrumentation faults.

The number of candidate IO sets grows exponentially
with the number of candidate inputs and outputs. Sup-
pose there are N

u
candidate inputs and N

y
candidate

outputs. Assume that these can all be used together if
desired, i.e., assume that there is a well-de"ned full IO set
including all N

u
inputs and all N

y
outputs. If certain

devices are not compatible, the problem can sometimes
be embedded in a larger problem where the devices are
allowed to be used together. During IO selection, a sub-
set of n

u
inputs and n

y
outputs, i.e., an n

u
]n

y
IO set, is

generated from the full IO set (n
z

will be used to denote
the number of controlled variables z). The total number
of distinct IO sets is given by (2Nu!1)(2Ny!1)#1, with
`#1a due to the empty IO set with n

u
"0 and/or n

y
"0

(open-loop system). The exponential growth of the prob-
lem motivates the need for systematic IO selection
methods to quickly and easily assess a large number of
candidate IO sets. Though IO selection could be per-
formed by controller design and closed-loop evaluation
for each candidate IO set, this is not feasible for anything
but a small number of candidates.

This paper provides a comprehensive review of the
currently known IO selection methods. As far as we
know, the only reviews in the 1990s that are related to
this topic and that are also rather extensive were given by
Morari (1992) and Skogestad and Postlethwaite (1996,
Chapter 10). A decade earlier, the articles by Morari,
Arkun, and Stephanopoulos (1980) and Nishida,
Stephanopoulos, and Westerberg (1981) should be men-
tioned. The main contributions are the following. First,
a list of properties is proposed that a good IO selection
method should possess (Section 2). This list is used to
assess known methods and it could be used as a guideline
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to develop new ones. Second, a comprehensive review of
IO selection methods is given that is believed to be rather
complete (Section 3). To aid the control engineer who
faces an IO selection problem in choosing the right
method, these methods are grouped according to the
control system property that they address. Third, an
overview of applications of systematic IO selection
methods is given, revealing that such methods are impor-
tant for a wide variety of problems (Section 4). These
applications are grouped according to the class of sys-
tems that is considered, so one can pick the method that
best matches one's problem. Fourth, a qualitative assess-
ment and comparison of the reviewed methods is given
(Section 5). This sketches the state of a!airs and gives rise
to some future research topics.

2. Desirable properties of IO selection methods

Partly inspired by Nett (1989) and Reeves (1991), eight
properties are proposed which we believe are the main
properties of the ideal IO selection method. These prop-
erties will be used as the basis for a qualitative assessment
of the IO selection methods to be reviewed. Desirably, an
IO selection method is:

1. Well-founded: The theory behind an IO selection
method must be sound and complete. The method
should be easy to use and transparent, i.e., bearing the
basic idea of the method in mind, the way in which the
outcome is a!ected by a change in the control goals must
be understandable. At least one convincing application
should prove the method's practical relevance.

2. Ezcient: An IO selection method should make it
possible to quickly evaluate a large number of candidate
IO sets. Algorithms are commonly called e$cient if they
solve problems in time polynomial in a measure of the
problem size; if not, they are called ine$cient. Based on
De Jager and Toker (1998), it is unlikely that the majority
of the methods to be reviewed can solve the IO selection
problem in time polynomial in N

u
and N

y
. Therefore, the

term e$ciency is used in a less formal context here,
namely to express the expected analytical and computa-
tional e!ort related to a problem which is not solvable in
polynomial time.

3. Ewective: E!ectiveness implies that those candidate
IO sets are eliminated for which the considered selection
criterion cannot be achieved (`nonviable IO setsa), while
those candidates are kept for which it can be achieved
(`viable IO setsa). Necessary or su$cient conditions for
the existence of a controller achieving a particular cri-
terion are often used. In both cases, the IO selection
method may be ine!ective: a necessary condition may
lead to the faulty acceptance of nonviable IO sets, while
a su$cient condition may lead to the faulty rejection of
viable IO sets. Hence, e!ectiveness calls for conditions
which are necessary and su$cient.

4. Generally applicable: An IO selection method should
deal with a wide variety of control problems. For in-
stance, a method is preferably suitable or easily generaliz-
ed to handle classes of nonlinear systems. General
applicability requires a set-up which can describe a wide
variety of control problems. To a large extent, this is
possible with the set-up of Fig. 1.

5. Rigorous: Viability should be addressed rigorously
to cover a wide variety of issues that are important for
control system design. For instance, an IO selection
criterion based on robust stability is more rigorous than
a criterion based on nominal stability. In general, a more
rigorous criterion selects a smaller number of viable IO
sets which may be manageable for more detailed further
analysis.

6. Quantitative: An IO selection method preferably
employs a quantitative criterion for IO set viability to
clearly distinguish between the prospects of candidate IO
sets. For instance, a qualitative criterion like state con-
trollability only provides a `yesa or `noa answer to input
set viability, while a quantitative controllability measure
provides additional information on `how stronglya an
input set a!ects the state.

7. Controller independent: An IO selection method
should eliminate IO sets for which there does not exist
any controller meeting the intended control goal.
Usually, it is undesirable to impose restrictions on
the controller design method, because this yields biased
conclusions on IO set viability. On the other hand, if
restrictions on the controller design method or the
maximum controller order do play a role, a controller-
dependent IO selection method may be advantageous.
For e$ciency reasons, IO selection should not involve
complete controller design.

8. Direct: For the purpose of e$ciency or if the list of
candidates is in"nite (as is often the case for #exible
structures), it is desired that an IO selection method
directly characterizes the viable IO sets, instead of per-
forming a candidate-by-candidate test for a particular
criterion. The latter, brute-force approach is indirect and
not solvable in time polynomial in N

u
and N

y
(De Jager

& Toker, 1998).

3. Description of IO selection methods

This section describes the key ideas of various IO
selection methods and conditions. Most of the ideas stem
from the process industry, but many of them can also be
applied in other disciplines, like mechanical systems.
Only those methods will be reviewed that are useful for
fairly general problems, even though they might origin-
ally have been developed for a speci"c application. In this
sense, the review is believed to be rather complete. For
the sake of brevity, formulas and derivations are omitted
if clarity is not endangered.
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Fig. 2. One degree-of-freedom (DOF) control system set-up often as-
sumed for IO selection; plant P, controller K, reference r, disturbance d,
and sensor noise v.

Fig. 3. Simple cause-and-e!ect graph.

To obtain a better overview of the many methods, they
are divided into di!erent groups. To aid the control
engineer in picking a suitable method, the methods are
grouped according to the selection criterion they address,
like state controllability or the occurrence of right half-
plane zeros. Section 3.8 is devoted to methods that can be
used independently of the selection criteria. The order in
which the di!erent groups are discussed is according to
ascending level of rigor.

Unless explicitly noted, all reviewed IO selection
methods apply to (1) "nite dimensional, (2) linear,
(3) time-invariant, and (4) continuous-time plants and
controllers. IO selection for other systems is largely unex-
plored. Besides these four limitations, many IO selection
methods exhibit two additional ones and it will be clear
from the text whether any of these play a role for the
considered method. First, it is often assumed that
n
u
"n

y
, leading to square controllers and IO sets. Sec-

ond, the methods are often tied to the restrictive set-up of
Fig. 2. If this set-up were transformed into the more
general one of Fig. 1, the reference r, the disturbance d,
and the sensor noise v would make up the entries of w,
while z usually consists of e"y

P
!r and/or u. Fig. 2 is

only useful if the outputs y (or y
P
) and the controlled

variables z are directly related and the control goals can
be formulated in terms of y. This is the case if z can be
measured directly (z"y) or if an explicit relationship is
known between y and the immeasurable variables in
z (z"f (y)). Direct control of the measurable variables in
y may then be satisfactory. This is called inferential
control and the measurements are referred to as second-
ary measurements. If y and z are not directly related,
it is not always possible nor desired to transform
the speci"cations for the controlled variables into
equivalent speci"cations for the measured variables.
A separate treatment of y and z, as in Fig. 1, would then
be welcome.

3.1. Accessibility

Govind and Powers (1982) propose a (mainly)
qualitative technique for IO selection based on cause-
and-e!ect graphs. Such a graph shows the relationships
between various variables and can be generated for linear
and nonlinear systems. The key idea for IO selection is
that a causal path must exist between the manipulated

and the controlled variables on the one hand (see Fig. 3)
and the measured and the controlled variables on the
other hand: with the manipulated variables it must be
possible to a!ect the controlled variables and with the
measured variables it must be possible to obtain the
values of the controlled variables, i.e., accessibility is
required. A large number of candidate IO sets may be
termed viable if they are only assessed for accessibility.
So, additional criteria should be invoked. For input se-
lection and a linear plant model, Govind and Powers
(1982) use the steady-state gains, time constants, and time
delays along candidate cause-and-e!ect paths as addi-
tional quantitative accessibility measures.

The ideas by Daoutidis and Kravaris (1992) could be
useful for input selection for nonlinear plants. They de"ne
the relative degree r

ij
of a controlled variable z

i
with

respect to a manipulated variable u
j

(y"z is assumed).
In that way, r

ij
is a measure of the e!ect of each one input

on each one output, such that it can also be used for CC
selection. The generic computation of r

ij
only requires

structural information on the system. The relative degree
is proposed as a measure of the dynamic interaction
between manipulated and controlled variables or as
a measure of the sluggishness of the response of the
controlled variables to steps in the manipulated vari-
ables. Intuitively, the relative degree is related to the
`physical closenessa of manipulated and controlled vari-
ables, or to the `direct e!ecta of manipulated variables on
controlled variables. These heuristics are often used for
IO selection. In a cause-and-e!ect graph, r

ij
#1 is the

minimum number of edges connecting u
j
to z

i
, provided

r
ij

is "nite; an in"nite r
ij

indicates nonaccessibility of
u
j
to z

i
. In Fig. 3, r

12
"1 for the two edges u

2
Px

2
and

x
2
Pz

1
, while r

21
"R. The relative degree is thus re-

lated to the number of states in the shortest cause-and-
e!ect path. This is consistent with the interpretation of
the relative degree as the number of integrations the
input has to go through before it a!ects the output.

The relative degree could form the basis for a quantit-
ative accessibility measure for input selection: the lower
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r
ij
, the better the accessibility of u

j
to z

i
. Thus, compute

r
zu

:"
nz
+
i/1

min(r
i1

,2, r
inu

) (1)

for a given input set, then candidate input sets with small
r
zu

are preferred. Daoutidis and Kravaris (1992) propose
the relative degree also as a tool for CC selection, since it
measures dynamic interaction between (groups of) inputs
and outputs. Soroush (1996) proposes output selection
based on the relative degree of a measured variable with
respect to an exogenous variable.

3.2. State controllability and state observability

This section deals with linear plant models P in the
state-space description:

x5 "Ax#Bu, (2)

y"Cx#Du, (3)

where n
u
need not be equal to n

y
. These equations repres-

ent the lower right part of G in Fig. 1. It is clear that
potential IO selection methods rely on controllability
and observability. These terms are broadly interpreted,
as will become clear later. In this section state controlla-
bility and state observability are the focus.

State controllability. System (2) or the pair (A,B) is called
state controllable if, for any initial state x(0)"x

0
, any time

t
e
'0, and any xnal state x

e
there exists an input u(t) such

that x(t
e
)"x

e
.

State observability. System (2)}(3) or the pair (C,A) is
called state observable if, for any time t

e
'0, the initial

state x(0)"x
0

can be determined from the time history of
the input u(t) and the output y(t) in the interval [0, t

e
].

These are `binarya concepts: either a plant exhibits the
property or not. More rigorous quantitative controllabil-
ity and observability measures could also be invoked.
The binary and quantitative approaches are considered
both.

3.2.1. Controllability and observability in a binary sense
A straightforward IO selection method would be to

reject candidate IO sets for which (A,B) is uncontrollable
or (C,A) is unobservable. Various simple tests are
available (Zhou, Doyle, & Glover, 1996, Section 3.2).
Nevertheless, such IO selection methods have not been
encountered in the literature, probably due to the lack of
rigor. Hovd and Skogestad (1992a) use stabilizability (i.e.,
controllability of the unstable modes) and detectability
(i.e., observability of the unstable modes) for the selection
of inputs and outputs, respectively.

Morari and Stephanopoulos (1980a) propose struc-
tural state controllability and observability as IO selec-

tion criteria. The plant is represented in a structural
model which requires only information related to
whether a variable is involved in a particular system
equation or not. A structural version of (2)}(3) would
have only two types of matrix entries: entries which are
"xed at zero and entries which can take any numerical
value, including zero. A numerical model also depends on
the values of the parameters which may be uncertain
(typically at the early stages of process design) or which
may vary with the considered linearization point. Struc-
tural controllability and observability thus provide gen-
eric information about the system, but they are only
necessary for controllability and observability in the
numerical sense. Necessary and su$cient conditions for
structural state controllability and observability consist
of (1) accessibility conditions (the states should be access-
ible from the inputs and the outputs should be accessible
from the states) and (2) rank conditions on the structural
pairs (A,B) and (C,A), see Morari and Stephanopoulos
(1980a). So, structural controllability and observability
imply (but are not implied by) accessibility. Structural
models are also used to describe nonlinear plants (Geor-
giou & Floudas, 1989; Morari & Stephanopoulos,
1980a). By `linearizinga a nonlinear model, a structural
linear model can be obtained. For instance, x5

1
"

x
1
x
2
, x5

2
"x2

2
would yield

A"C
] ]
0 ]D.

Structural controllability and observability thus provide
prospects for IO selection for nonlinear systems.

In Lin, Tade, and Newell (1991) and Lin, Newell,
Douglas, and Mallick (1994), the key idea for IO selec-
tion is structural output controllability. This means that
each output in y can be in#uenced by at least one input in
u independently (so, at least n

u
5n

y
). Structural output

controllability and cause-and-e!ect are thus strongly
linked. The main motivation to introduce structural
output controllability is that, in practice, it may not be
necessary to (structurally) control and observe all states.
For meaningful IO selection, controlled variables
z should be properly represented by any of the candidate
output sets y. More on structural controllability and
observability can be found in Georgiou and Floudas
(1989) and Russell and Perkins (1987).

3.2.2. Controllability and observability in a quantitative
sense

Due to the binary nature of (structural) state controlla-
bility and state observability, they are unlikely to provide
IO selection conditions which are selective enough. The
accepted number of IO sets may be too large for control-
ler design and closed-loop evaluation. It should be pos-
sible to draw conclusions on the strength of the coupling
between inputs, states, and outputs. Various quantitative
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measures for state controllability and observability have
been proposed for this.

In the upcoming IO selection methods, the controlla-
bility Gramian =

#
(t) and the observability Gramian

=
0
(t) play a role, see, e.g., Zhou et al. (1996, Chapter 3).

If A in (2) is stable, ¸
#
:"lim

t?=
=

#
(t) and ¸

0
:"

lim
t?=
=

0
(t) are the unique, positive semi-de"nite

solutions to the following Lyapunov equations:

A¸
#
#¸

#
AT#BBT"0, (4)

AT¸
0
#¸

0
A#CTC"0. (5)

Georges (1995) selects optimal actuator and sensor
locations (n

u
and n

y
are "xed) based on maximizing

the minimum eigenvalues of =
#
(¹) and =

0
(¹),

respectively, with ¹ a given, possibly in"nite, time.
The idea is to minimize the input energy to reach a given
state and to maximize the output energy generated by
a given state. Georges (1995) extends this idea to nonlin-
ear systems x5 "f (x)#Bu, y"Cx. IO selection then re-
quires the solution of nonlinear, partial di!erential
equations.

MuK ller and Weber (1972) embed the minimum eigen-
values of=

#
(t) and=

0
(t) in an inxnite set of quantitative

controllability and observability measures. Among those
are the determinants of=

#
(t) and=

0
(t) and the recipro-

cals of the traces of =~1
#

(t) and =~1
0

(t). IO selection
could aim at maximizing any of these measures.

HacH and Liu (1993) and Ko, Tongue, and Packard
(1994) de"ne performance indices that involve the eigen-
values of ¸

#
and ¸

0
. The IO selection criteria proposed

by HacH and Liu (1993) are based on the energy of the
input and the output in case of transient responses or
persistent disturbances. The criteria are especially useful
for #exible structures. They provide a balance between
the importance of the lower- and the higher-order modes.
For systems with small damping ratios and well-separ-
ated natural frequencies, the locations of force actuators
and velocity sensors tend to be collocated (also for many
other criteria). The selection criterion for point actuators
in HacH and Liu (1993) is extended to distributed
actuators in HacH (1995).

Assume that the plant is controllable, observable, and
stable. A balanced realization of (2)}(3) can then be ob-
tained, with ¸

#
and ¸

0
equal and diagonal (Moore, 1981).

The diagonal entries of these Gramians are called the
Hankel singular values (HSVs), re#ecting the joint con-
trollability and observability of the balanced states. Can-
didate IO sets with large HSVs are preferred in Samar
and Postlethwaite (1994). HSVs also form the basis for
IO selection in Gawronski and Lim (1996) and Lim
(1997), but they employ special properties of #exible
structures. As in Fig. 1, Lim (1997) explicitly de"nes
exogenous and controlled variables and performance
weightings to improve the IO selection criterion of
Gawronski and Lim (1996).

Another quantitative controllability measure could be
the size of a region of initial states from which the state
can return to the origin in a "xed time t

e
with an admiss-

ible input signal. Schmitendorf (1984) terms u admissible
if it obeys a magnitude bound, while Vander Velde and
Carignan (1984) call u admissible if it obeys an energy
bound. Both measures may be helpful for actuator selec-
tion. Vander Velde and Carignan (1984) also discuss
a dual approach to sensor selection and they address the
e!ect of possible actuator and sensor failures from a
statistic viewpoint.

3.3. Right half-plane zeros

Distinct IO sets may give rise to distinct numbers and
distinct locations of (multivariable) system zeros, as de-
"ned in, e.g., Zhou et al. (1996, Section 3.11). Considering
plant (2)}(3), the zeros can be interpreted as those values
of s where the rank of the corresponding transfer function
matrix (TFM) P(s) :"C(sI!A)~1B#D from u to y is
smaller than its normal rank, i.e., its maximally possible
rank for at least one value of s. In general, the zeros of
P(s) have no direct relation with the zeros of the indi-
vidual elements of P

ij
(s).

Zeros in the right half-plane (RHP) limit the closed-
loop performance. For instance, for SISO systems as in
Fig. 2 the performance speci"cation is often in terms of
a magnitude bound on the sensitivity de"ned as

S(s) :"(I#P(s)K(s))~1. (6)

In case of tracking (r) or disturbance (d) rejection,
DS( ju)D is required small for low frequencies. The band-
width is desirably large, but RHP zeros impose an upper
bound. For a stable plant with a single RHP zero, this
bound is smaller if the RHP zero is closer to the origin
(Skogestad & Postlethwaite, 1996, Section 5.6). For
a stable MIMO plant, the implications of RHP zeros are
similar to those for stable SISO plants (Skogestad & Pos-
tlethwaite, 1996, Section 6.5). For an unstable plant, the
restrictions due to RHP zeros are even more severe.
Performance limitations due to RHP zeros are extensive-
ly discussed by, e.g., Freudenberg and Looze (1985,
SISO), Havre and Skogestad (1996, MIMO), Sidi
(1997, SISO), Skogestad and Postlethwaite (1996,
Chapters 5 (SISO) and 6 (MIMO)), and Zhou et al. (1996,
Chapter 6 (MIMO)). If magnitude bounds are imposed
on u and y, Za"riou and Chiou (1996) show that
RHP zeros of the individual elements of P(s) may
be detrimental, in contrast to the case without these
requirements. Goodwin and Seron (1995) initiate e!orts
towards quantifying performance limitations due to
`RHP zerosa in nonlinear systems. Though zeros in the
left half-plane do not impose fundamental limitations on
control, they may cause practical problems if they are
close to the origin (Skogestad & Postlethwaite, 1996,
Section 5.6).
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Fig. 4. Control system set-up for assessing IO controllability.

A guideline for IO selection in the set-up of Fig. 2 is to
reject IO sets which introduce RHP zeros with magni-
tudes below the desired bandwidth. This is employed by,
e.g., Biss and Perkins (1993), Hovd and Skogestad (1993),
Samar and Postlethwaite (1994), and Wol!, Skogestad,
Hovd, and Mathisen (1992). For unstable plants, also IO
sets should be avoided with RHP zeros close to RHP
poles. Exact cancellation of RHP poles and zeros causes
the unstable modes to become uncontrollable and/or
unobservable and so a stabilizing controller does not
exist. Lee and Speyer (1993) show that a sensible place-
ment of single actuators and sensors along a #exible
beam is important to avoid cancellation of zeros and
poles in the origin.

3.4. Input}output controllability

A large amount of literature on IO selection is devoted
to quantitative measures for IO controllability. The
treatment is usually restricted to control problems in the
set-up of Fig. 4, where P

d
(s) models the disturbance at

the output of the plant and *(s) models the uncertainty
(multiplicative input uncertainty is depicted, but some-
times multiplicative output uncertainty is considered).
Unless noted otherwise, it is assumed in this section that
any candidate output set y properly represents the
control objectives. The concept of IO controllability is,
crudely:

Input+output controllability. The plant in Fig. 4 is called
IO controllable if acceptable performance can be achieved,
i.e., if the outputs y and the inputs u can be kept acceptably
small, in the presence of bounded uncertainties *, refer-
ences r, disturbances d, and sensor noises v.

The di!erence with the de"nition by Skogestad and
Postlethwaite (1996, Section 5.1) is that uncertainties are
taken into account. In contrast to state controllability,
IO controllability tries to capture aspects which are rel-
evant in practice. State controllability requires transition
from one state to any other within a "nite time interval,
which may be irrelevant. Still, state controllability does
not imply IO controllability, since it does not address the
system behavior during this time interval. The IO con-
trollability measures in this section usually capture only

one aspect of IO controllability. Combining measures is
thus required for rigorous IO selection.

Morari (1983) states that the performance is limited
due to nonminimum-phase elements (RHP zeros and
time delays), restrictions on the inputs u, and model
uncertainties. Most IO controllability measures are
based on input restrictions and uncertainties which are
usually not addressed simultaneously. All measures
are simple and give a rough idea of how easy the plant is
to control, irrespective of the controller. It could be
argued that the controller-independent IO selection
methods and conditions in other sections are also based
on controllability measures, since controllability is
a property of the plant, the control goals, and the IO set
alone.

Most IO controllability measures assume a suitable
scaling of the involved variables, because the results
critically depend on it. A proper scaling expresses the
relative signi"cance of the variables that determine the
performance. One way to scale the variables is to divide
them by their allowed (u and y) or expected (r, d, and v)
magnitudes, see Skogestad and Postlethwaite (1996, Sec-
tion 1.4). Some IO controllability measures are scaling-
independent. This is often seen as an advantage, but this
contradicts the importance of a suitable scaling for the
reason mentioned above. It does not matter for a scal-
ing-independent measure whether the plant is badly or
well scaled: the results are the same and so the perfor-
mance speci"cations are not well addressed. We therefore
believe that for IO selection it is desired to have scaling-
dependent measures and to apply them to a plant for
which the candidate inputs and outputs have been suit-
ably scaled a priori.

Di!erent groups of controllability measures will be
considered. The foundation is often laid by the singular
value decomposition (SVD). A complex l]m matrix
F can be factorized by an SVD as follows:

F">&;H, (7)

where M ) NH denotes the complex conjugate transpose.
The l]l matrix > and the m]m matrix ; are unitary,
i.e., >H">~1 and ;H";~1. The matrices > and
; form orthonormal bases for the column (output) space
of F and the row (input) space of F, respectively. The
columns >

i
of > will be called the `left (output) singular

vectorsa, while the columns ;
i

of ; will be called the
`right (input) singular vectorsa. The l]m matrix & con-
tains a diagonal matrix &

1
of real nonnegative singular

values p
i
, arranged in descending order:

&"C
&

1
0 D if l5m or &"[&

1
0] if l4m, (8)

where

&
1
"diag(p6 :"p

1
,p

2
,2, p :"p

k
) with k"min(l,m).

(9)
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The p
i
are the square roots of the k largest eigenvalues

j of FHF and FFH:

p
i
(F)"Jj

i
(FHF)"Jj

i
(FFH), i"1,2, k. (10)

Based on the magnitudes of the singular values, the
directions of>

1
and;

1
are often referred to as the `most

important directionsa, while the directions of >
2

and
;

2
are often called the `second most important direc-

tionsa, and so on. Provided p (F)O0, the Euclidean con-
dition number of the matrix F is

i(F) :"
p6 (F)

p(F)
. (11)

Finally, the pseudo-inverse (or Moore}Penrose general-
ized inverse) of a nonsquare, complex matrix F can be
written as

Fs"
r
+
i/1

1

p
i
(F)
;

i
>H

i
with r"rank(F). (12)

3.4.1. The minimum singular value
A "rst IO controllability measure that is often used for

IO selection is the frequency-dependent minimum singu-
lar value of the plant: p(P(ju))50 (usually, `( ju)a will be
omitted). In Tzouanas, Luyben, Georgakis, and Ungar
(1990), p(P) is suggested for on-line selection of the input
set, to adapt to changing operating conditions. The
general rule is that IO sets should be selected which yield
a large p(P). Three reasons for this are given below.

The xrst one is related to independent control of all the
outputs y (Skogestad & Postlethwaite, 1996, Section 6.3).
Apart from the prerequisite n

u
5n

y
, the IO set should

guarantee p(P)'0 (except at possible zeros on the
imaginary axis), which implies the rank of P to be equal
to n

y
. If p(P)+0, independent control is probably

di$cult to achieve.
The second reason is related to input constraints.

Morari (1983) argues that for a plant to have good
tracking (r) and disturbance rejection (d) in case of input
magnitude limitations, p(P) should be large. Yu and
Luyben (1986) call p(P) the `Morari Resilience Indexa
(MRI). Dynamic resilience is synonymous to IO control-
lability. Yu and Luyben (1986) suggest to select the input
set with the largest MRI over the frequency range of
interest, which is adopted by Havre, Morud, and Skoges-
tad (1996) and Wol! et al. (1992). This quanti"es the rule
`choose inputs which have a large e!ect on the outputa,
see Morari (1983) and Seborg, Edgar, and Mellichamp
(1989, Chapter 28).

The third reason is from Havre et al. (1996) and
Skogestad and Postlethwaite (1996, Section 10.3). As-
sume that the plant in Fig. 4 has additional manipulated
inputs u

0
that are not used for controlling y and addi-

tional outputs y
0

that are not fed back, but that are
important for performance. The reference r (assumed

constant) and the input u
0

are generated by a controller
at a higher level. For a given disturbance d, assume that
there exist u

0
and u that optimize the performance. The

inputs will not be equal to the optimal values in practice,
due to imperfect control, model uncertainties, distur-
bances, and sensor noise. An approach to output selec-
tion is thus to select outputs y that keep u

0
and u close to

the optimal values. Havre et al. (1996) and Skogestad and
Postlethwaite (1996, Section 10.3) show that this corres-
ponds with large p(P), at least for low frequencies where
feedback is e!ective.

3.4.2. The maximum singular value
Contrary to the other IO controllability measures, the

maximum singular value p6 usually applies to di!erent
TFMs than P(s). Depending on the objective, p6 may
either be required small or large.

Havre et al. (1996) and Skogestad and Postlethwaite
(1996, Section 10.3) select secondary measurements for
inferential control. The plant P in Fig. 4 has additional
outputs z which are not fed back. The outputs z should
be kept at a given reference value r

z
which is transformed

into a reference value r
y

for y. Assuming close-to-perfect
control of y via u"P~1(r

y
#v!P

d
d), the closed-loop

control error r
z
!z is given by r

z
!z"M

d
d#M

v
v,

with M
d
and M

v
depending on open-loop TFMs relating

d, z, u, and y. For a nonsquare IO set, P~1 is replaced by
the pseudo-inverse Ps. In case of a square IO set and no
sensor noise (v"0), the control law would yield perfect
control and M

d
"0 if y"z. The rule for selecting sec-

ondary measurements y is to keep p6 (M
d
) and p6 (M

v
) small

in the frequency ranges of interest. This may involve
a trade-o! which could be addressed by combining
M

d
and M

v
and selecting y such that p6 ([M

d
M

v
]) is small.

A related, less general method is discussed by Bequette
and Edgar (1986). They consider square IO sets and the
regulator problem (z

r
"0, y

r
"0) without sensor noise

(v"0). Under perfect steady-state control of y, output
sets with small p6 (M

d
(0)) are preferred. This minimization

of the sensitivity of the regulated variables z to the
disturbances d is then balanced against the maximization
of the e!ect of the inputs u on the outputs y. The latter
involves p6 (P): output sets with large p6 (P) are preferred.

The input selection method of Cao and Biss (1996) is
one of the few direct methods. With N

y
"xed outputs and

N
u

candidate inputs, the plant for the full input set,
P"[P

1
,2, P

Nu
], is constructed. Cao and Biss (1996)

suggest to retain those n
u
inputs (N

y
4n

u
4N

u
) with the

largest `single-input gaina:

p
uj
(P) :"JPH

j
P
j
"p(P

j
)"p6 (P

j
) (13)

at the relevant frequency (note that there is only one
singular value for the column P

j
). This approach may not

be e!ective, since the combination of inputs is not as-
sessed. An input with all entries in P

j
equal to zero,
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except for a single large entry, could have a large p
uj
(P),

whereas an input with all entries in P
j

small could have
a small p

uj
(P). So, an input set may be selected which is

unable to a!ect all outputs. The related `single-input
disturbance gaina p

d,uj
(P,P

d
) is de"ned in Cao (1995,

Section 6.2). Consider Fig. 4 with *"0, r"0, and v"0.
For perfect disturbance rejection (y"0), u"!PsP

d
d

must be applied. With P corresponding to the full input
set, input u

j
, and (PsP

d
)
j

the jth row of PsP
d
:

p
d,uj

(P, P
d
) :"J(PsP

d
)
j
(PsP

d
)H
j
"p((PsP

d
)
j
)

"p6 ((PsP
d
)
j
). (14)

Cao (1995) suggests to retain those inputs for which
p
d,uj

(P, P
d
) is large, since these would be important for

disturbance rejection. This heuristic rule may not be
e!ective: P in (14) corresponds to the full input set, so
p
d,uj

(P, P
d
) may state something about the e!ectiveness of

u
j

as part of the full input set, but not about its e!ec-
tiveness in a smaller input set. For e!ective yet indirect
input selection, p

d,uj
(P, P

d
) should be recomputed for

distinct input sets and plants P. One may wonder why
Cao (1995) does not suggest to retain those inputs for
which p

d,uj
(P,P

d
) is small, since these inputs would

require the least control e!ort for rejection of a given set
of disturbances. This rule would be in line with the use of
the MRI p(P) when P

d
"I (note the fact p6 (F~1)"1/p(F)

and the `inversea in p
d,uj

(P,P
d
)).

3.4.3. The condition number
The frequency-dependent condition number is another

common IO controllability measure. In general, an IO
set should be chosen which results in a small condition
number. The condition number of a column or row
vector (which have only one singular value) equals one
and so it is not selective if n

u
"1 or n

y
"1.

Morari (1983) shows that a small condition number
i(P) corresponds to good robustness against full-block
(unstructured) multiplicative uncertainty. This would jus-
tify selecting IO sets giving rise to a small i(P). Skogestad
and Postlethwaite (1996, Section 6.10) state that the per-
formance of plants (IO sets) with a small i(P) is robust to
both diagonal and unstructured multiplicative uncertain-
ty * at the input of the plant. Section 3.6 sophisticates the
use of i(P) to address robustness.

Reeves (1991, Section 5.2) proposes a method to reduce
the number of candidate inputs and outputs prior to
applying the computationally more involved method in
Section 3.6. Starting with the full N

u
]N

y
IO set, that

single input or single output is eliminated which pro-
duces the reduced (N

u
!1)]N

y
or N

u
](N

y
!1) IO set

with the smallest i(P), computed at a relevant frequency.
In this way, the size of the IO set is reduced gradually,
until it is manageable for other techniques. The "nal IO
set is not guaranteed to be the IO set of that dimension

for which i(P) is smallest. For that, i(P) should have been
computed for all IO sets of that dimension.

Skogestad and Morari (1987a) consider the disturbance
condition number. For the kth disturbance d

k
in Fig. 4,

it is

i
dk

(P,P
d
) :"

DDP~1P
dk

DD
2

DDP
dk

DD
2

p6 (P)

with 14i
dk

(P,P
d
)4i(P). (15)

Here, P
dk

is the kth column of P
d
corresponding to d

k
and

DD ) DD
2

denotes the Euclidean vector norm (the length) at
a given frequency. For nonsquare P, P~1 should be
replaced by Ps. The disturbance condition number is
a measure of the input magnitude which is needed to
reject a disturbance in the direction P

dk
, relative to reject-

ing a disturbance with the same magnitude, but in the
direction requiring the least control e!ort. Input sets
yielding a small i

dk
(P,P

d
) are most e!ective for distur-

bance rejection. The essential di!erence between input
selection with p(P) and with i

dk
(P,P

d
) is that p(P) aims at

rejecting disturbances with large magnitudes by using
a given input magnitude, whereas i

dk
(P, P

d
) aims at small

input magnitudes for a given disturbance direction, irre-
spective of the disturbance's magnitude. The de"nition of
the `input disturbance alignmenta in Cao and Rossiter
(1996) shows close resemblance with (15):

g
dk

(P,P
d
) :"

DDPPsP
dk

DD
2

DDP
dk

DD
2

with 04g
dk

(P,P
d
)41. (16)

Input sets with g
dk

(P, P
d
) close to one are preferred. The

projection norm of P
dk

on the column space of P is then
large, which serves good disturbance rejection.

3.4.4. Singular vectors
The next group of IO controllability measures involves

the left (>) or right (;) singular vectors from the SVD
in (7).

Moore, Hackney, and Carter (1987) suggest three out-
put selection rules. The key idea is to "nd the best
compromise between measurements y that are mutually
independent and measurements that are sensitive to
changes of the inputs u. For this purpose, the SVD of P at
steady state is computed. Square IO sets are considered.
The xrst rule relies on the SVD of P(0) for the full output
set. Those outputs are selected that correspond to the
entries of each left singular vector in > with the largest
absolute values (note that outputs cannot be distin-
guished if the same entry occurs multiple times). This is
based on the notion that the left singular vectors point
into the direction of the "rst (>

1
), the second (>

2
), etc.,

most sensitive combination of outputs. The selected out-
puts are stated to be sensitive to the inputs and, due to
orthogonality of the vectors in >, relatively independent.
A similar procedure could be proposed for input selec-
tion, involving the largest absolute values of ;. This
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output selection method is direct, since the SVD is not
recomputed for each candidate. For the same reason,
however, the method may be ine!ective. The second rule
is a modi"ed version of the "rst one. Suppose that the
entry in >

2
corresponding to the entry of the largest

absolute value of >
1

is large and vice versa. Then there
would still be signi"cant interaction between the outputs
selected by the "rst rule. To arrive at an output set with
reduced interaction, output selection can be based on the
di!erences between the absolute-valued entries of the left
singular vectors, possibly at the price of reduced sensitiv-
ity to u. The third rule resolves the possible ine!ectiveness
of the previous ones by recomputing the SVD for all
candidate output sets. Moore et al. (1987) state that
a large value of p(P(0)) indicates a good sensitivity to
inputs and that a small value of i(P(0)) indicates a good
mutual independence of the outputs. An output set for
which the measure:

. (P(0)) :"
p(P(0))

i(P(0))
(17)

is large should exhibit a good compromise between sensi-
tivity to inputs and mutual independence of outputs.

In Keller and Bonvin (1987), an input selection method
is proposed that aims at selecting the n

u
inputs with `the

strongest and most orthogonal e!ecta on the (controlled)
outputs y. This is quanti"ed via the n

u
largest singular

values and the corresponding right singular vectors of the
input matrix B in the plant's state-space description in
a scaled modal basis. The input selection method is direct
if B is generated for the full input set.

In Cao and Biss (1996) a direct approach is suggested
to select the n

u
5N

y
inputs from the N

u
candidates with

the largest e!ect on the "xed number of N
y

outputs y.
The SVD of P for the full input set is computed at
a relevant frequency. Assuming that P has full row rank
N

y
, the `single-input e!ectivenessa for u

j
is given by

l
uj
(P)"S

Ny

+
i/1

;H
ji
;

ji
.

(18)

The n
u

inputs that yield the largest values l
uj
(P) should

be selected. It can be expected, but not guaranteed, that
this input set gives the largest ratio DDu

1
DD
2
/DDuDD

2
, with

u
0

the part of u"u
1
#u

0
that is in the null space of P,

i.e., Pu
0
"0. In Cao (1995, Section 6.3), the SVD of PsP

d
is used to de"ne the `single-input disturbance
e!ectivenessa, as a similar measure for the disturbance
rejection e!ectiveness.

3.4.5. The relative gain array
The "nal IO controllability measure that is often

employed for IO selection is the frequency-dependent
relative gain array (RGA) for a nonsingular, square
matrix:

"(P( ju)) :"P( ju) .* (P~1( ju))T, (19)

with ` .* a denoting element-by-element multiplication
(Hadamard or Schur product). For a nonsquare P, the
inverse in (19) is again replaced by the pseudo-inverse
(Chang & Yu, 1990). The RGA is independent of the
scaling of the plant's inputs and outputs if n

u
"n

y
, while

it is independent of output scaling if n
u
'n

y
and indepen-

dent of input scaling if n
u
(n

y
. The RGA was introduced

by Bristol (1966) as a measure for interactions in decen-
tralized control systems. As a result, there is a bulk of
literature proposing RGA-related conditions for CC se-
lection, but the RGA is also useful for IO selection.
A frequently encountered rule is that IO sets causing
large RGA elements should be avoided, since the corre-
sponding plants would be di$cult to control, see, e.g.,
Chen, Freudenberg, and Nett (1994).

Hovd and Skogestad (1992b) and Skogestad and
Morari (1987b) show that plants with large absolute-
valued RGA elements (1) are very sensitive (especially
around the bandwidth) to diagonal multiplicative input
uncertainty if an inverse-based controller `K"P~1a is
used and (2) are very sensitive to element-by-element
uncertainty in P. In practice, it is often plausible to
assume the "rst type of uncertainty, e.g., in case of ne-
glected actuator dynamics. However, it is disputable to
assume the second type, because the individual elements
of P(s) are usually coupled in some way. Motivated by (1),
one step of the IO selection procedure in Samar and
Postlethwaite (1994) is based on the magnitude of RGA
elements.

Reeves (1991, Section 5.2) proposes two RGA-based
heuristics to reduce the N]N full IO set (N"N

u
"N

y
)

to a smaller, n]n IO set (n"n
u
"n

y
). These heuristics

may not produce the IO set that is optimal with respect
to the intended objective. The xrst heuristic employs the
following lower bound to the condition number at
a given frequency (Nett & Manousiouthakis, 1987):

i"(P) :"2max(DD"(P)DD
*1

, DD"(P)DD
*=

)!14i(P) (20)

with DD"(P)DD
*1

:"max
j
+

i
D"

ij
D the maximum absolute-

valued row sum and with DD"(P)DD
*=

:"max
i
+

j
D"

ij
D the

maximum absolute-valued column sum (the subscript `ia
denotes the induced matrix norm). Actually, i" (P) is
a lower bound to the minimum condition number i8 (P)
under the best-possible IO scalings:

i"(P)4i8 (P) :" inf
D1 ,D2

i(D
1
PD

2
)4i(P). (21)

D
1

and D
2

are diagonal matrices with real, positive
entries. Computation of i8 (P) involves a convex optimiza-
tion and so is rather easy, but computation of i"(P) is
easier. Based on the fact that i" (P)4i(P) and the notion
that IO sets yielding a small plant condition number are
preferred, Reeves (1991) suggests to discard that single
input and output from the N]N IO set for which the
(N!1)](N!1) reduced IO set exhibits the smallest
i"(P). The second heuristic relies on the aforementioned
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notion that a large RGA element "
ij

only permits a small
uncertainty in the corresponding plant element P

ij
.

Reeves (1991) proposes to identify the row and column
indices of the largest RGA element and to discard the
corresponding input and output from the N]N IO set.
For the (N!1)](N!1) IO sets obtained with either of
these heuristics, the RGA is recomputed and additional
inputs and outputs may be eliminated. This procedure is
repeated until the IO set with the intended dimension is
reached.

As shown in Cao and Biss (1996), Chang and Yu
(1990), and Skogestad and Postlethwaite (1996, Section
10.5), to some extent the RGA may be used for a direct
approach to IO selection. Consider P corresponding to
the full IO set and suppose N

u
ON

y
. The RGA for the

nonsquare P could then be used for squaring down the
plant to have dimension min(N

u
, N

y
)]min(N

u
, N

y
). If

N
u
'N

y
, it is suggested to eliminate the inputs u

j
corre-

sponding to an RGA column sum +Ny

i/1
"

ij
41 that is

much smaller than one. The elements in each row and
column of the RGA sum up to one. If N

y
'N

u
, it is

suggested to eliminate the outputs y
i
corresponding to an

RGA row sum +Nu

j/1
"

ij
41 that is much smaller than

one. In this way, the squared IO set consists of the inputs
with the largest e!ect on the outputs and of the outputs
which can best be a!ected by the inputs. In Cao (1995,
Section 6.4), the RGA-like matrix "

d
:"(PsP

d
)

.* ((PsP
d
)s)T is used in a similar way to reject inputs which

are less e!ective for disturbance rejection.

3.5. Ezciency of manipulation and estimation

The objective of actuators is to manipulate the system
such that it behaves as desired. This should be achieved
with limited energy. A reasonable approach to actuator
selection is thus the minimization of an input-set-depen-
dent cost function J

u
in terms of the input energy. This

`e$ciency of manipulationa is the topic of Section 3.5.1.
The objective of sensors is to gain the best-possible in-
formation on the system's behavior. Hence, sensor selec-
tion could be based on the minimization of an output-
set-dependent cost function J

y
involving the estimation

errors of relevant variables, like states. This `e$ciency of
estimationa is treated in Section 3.5.2. In Section 3.5.3,
the cost functions J

uy
combine e$ciency of manipulation

and estimation. All methods assume the plant to be
described by (2)}(3), possibly extended with process dis-
turbances w

x
in (2) and sensor noise w

y
in (3).

3.5.1. Ezciency of manipulation
In Al-Sulaiman and Zaman (1994), the cost function

J
u

takes essentially the same form as in the well-known
linear quadratic regulator (LQR) problem:

J
u
"P

te

0

(x(t)TQx(t)#u(t)TRu(t)) dt. (22)

Q"QT50 and R"RT'0 are weights. The input set
yielding the smallest J

u
is the most appropriate one.

Al-Sulaiman and Zaman (1994) only evaluate J
u

after
a state feedback has been designed by pole placement
and a closed-loop simulation for a disturbance has been
run over the time interval [0, t

e
]. The input selection thus

depends on the choice of the disturbance signal. Xu,
Warnitchai, and Igusa (1994) use a similar cost function
with t

e
"R. They look for the IO set yielding the

smallest J
u

under noise-free static output feedback, by
solving a nonlinear programming problem.

For nonlinear systems, Cao, Biss, and Perkins (1996)
consider selection of inputs with magnitude constraints.
The cost function J

u
takes the form

J
u
"P

te

0

(z(t)!z
r
)TQ(z(t)!z

r
) dt (23)

with z
r

a speci"ed setpoint for the controlled variables
z and with Q'0 a diagonal weighting matrix. For
a given input set, J

u
is minimized as a function of the

input signal u(t) and the "nal time t
e
, subject to the

constraints u
l
4u(t)4u

u
and subject to the nonlinear

system behavior f (x5 ,x, z, u, t)"0 and a given initial and
"nal system state. The input set that yields the smallest
J
u
is preferred. Input selection based on this optimization

requires large computational e!ort (Cao, 1995, Section
8.2) and the results may depend on the choices of z

r
and

the initial conditions.

3.5.2. Ezciency of estimation
Morari and Stephanopoulos (1980b) select (secondary)

measurements aimed at minimizing the errors in the
estimates of relevant variables, like the controlled vari-
ables z. This aim is transformed into the minimization of
cost functions J

y
. The error sources are model uncertain-

ties, process disturbances, and sensor noise. These are
treated from a stochastic point of view by introducing
colored process noise w

x
and white sensor noise w

y
. Four

output selection criteria are proposed. These are all
based on a static estimator, derived for the steady-state
model. The "rst aims at minimizing the static estimation
error, the second aims at minimizing the e!ect of model
uncertainties on the estimates, and the third and fourth
aim at minimizing the estimation errors if the static
estimator is used for the dynamic system. The "rst
criterion is essentially a multivariable extension of the
`projection error criteriona derived by Joseph and
Brosilow (1978) who estimate single variables. According
to this criterion, the results tend to improve if measure-
ments are added. The second criterion is essentially the
same as the `condition number criteriona of Weber and
Brosilow (1972), involving the open-loop steady-state
TFM from the disturbances w

x
to the measurements y.

According to this criterion, the results tend to degrade if
n
y

increases, which is quite surprising. Hence, a trade-o!
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Fig. 5. One DOF control system set-up with unstructured, additive
uncertainty.

must be made when the projection error criterion and
condition number criterion are used concurrently for
output selection. The counter-intuitive result for the con-
dition number criterion can (partially) be attributed to an
uncertainty model that is physically inconsistent for the
candidate output sets, see also Lee (1991, Section 3.5).

The output selection method proposed by Kumar and
Seinfeld (1978) aims at minimizing state-estimation
errors using a dynamic estimator (Kalman "lter) instead
of a static one. Model uncertainties, process disturbances,
and sensor noise are again approached from a stochastic
point of view by adding white noise to (2) and (3).
The cost function J

y
to be minimized as a function of the

output set involves the trace of the estimation error
covariance matrix #(t):

J
y
"a trace(#(t

e
))#bP

te

0

trace(#(t)) dt,

# :"E((x!x( )T(x!x( )) (24)

with a'0 and b'0 weighting parameters. The matrix
#(t) is obtained by solving a di!erential Riccati equation.
For a "xed number of sensors, an iterative algorithm
identi"es the optimal ones among all candidates.

Rhodes and Morari (1995) make an attempt towards
output selection for a nonlinear autonomous plant
x5 "f (x), y"g(x). The basic idea is not minimization of
estimation errors, but minimization of `modeling errorsa.
The aim is to designate the smallest number of (second-
ary) measurements y that enables an accurate recreation
of the nonlinear system dynamics. This only involves
sampled system data y(k). After output selection, the
outputs that are needed to accurately describe the system
are known, but a model still has to be derived. As in
Kammer (1996), the derived output sets may be well
suited for modeling, but not for control where the out-
puts may have di!erent tasks. This is also recognized by
Roh and Park (1997), who consider actuator selection for
control and for identi"cation, using di!erent criteria de-
pending on the task. In Kammer (1996), the criterion for
selecting sensors for modal identi"cation of #exible struc-
tures is maximization of the determinant of the observ-
ability Gramian, which is also among the criteria
proposed by MuK ller and Weber (1972) for selecting con-
trol sensors.

3.5.3. Joint ezciency of manipulation and estimation
In Norris and Skelton (1989), IO selection is based on

a similar cost function as in linear quadratic Gaussian
(LQG) control:

J
uy
"EAP

=

0

(zT(t)Qz(t)#uT(t)Ru(t)) dtB (25)

with z"Fx the variables to be kept small. Both the
actuators and the sensors may have dynamics like (2)}(3).

These dynamics may in turn be disturbed with additive,
possibly correlated, white noise. One approach to IO
selection would be to recompute J

uy
(i.e., to recompute

the estimator and feedback gains) for each IO set and to
identify the IO set(s) yielding the smallest J

uy
. However,

to reduce computational e!ort, Norris and Skelton
(1989) compute J

uy
only for the full IO set. Under reten-

tion of the corresponding estimator and feedback gains,
the e!ectiveness of each actuator and sensor is expressed
as the change in J

uy
if an actuator or sensor is eliminated

(the larger the change, the more e!ective). These e!ec-
tiveness measures are then used for IO selection. How-
ever, the de"nitions of the measures are disputable: they
may not be physically meaningful and they are not con-
sistent for actuators on the one hand and sensors on the
other.

In Mellefont and Sargent (1977), minimization of
a slightly adapted version of the LQG cost function in
(25) forms the basis for on-line switching between output
sets. The switching policy is determined o!-line. By
switching, the number of employed measurements is
made as small as possible, to reduce the costs (computer
time) of processing measurements.

3.6. Combined robust stability and nominal performance

This section considers combined robust stability (RS)
and nominal performance (NP) as the IO selection
criterion. RS guarantees stability in the presence of
uncertainties, whereas NP guarantees stability and per-
formance in the absence of uncertainties. Section 3.6.1
summarizes an IO selection method which is restricted to
the one DOF control system set-up in Fig. 5, while
Section 3.6.2 describes methods for the set-up in Fig. 1.
Combined RS and NP does not imply the more rigorous
property of robust performance (RP), i.e., guaranteed
stability and performance in the presence of uncertain-
ties, though the converse holds.

3.6.1. One DOF control system set-up
Reeves (1991) discusses a method to reject those IO

sets for which there does not exist a controller achieving
joint RS and NP. The original idea is due to Nett (1989).
The method is also summarized by Banerjee and Arkun
(1995) and implemented in a MATLAB toolbox (Reeves,
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Nett, & Arkun, 1991). The starting point is RS for the
control system in Fig. 5, where P and K are square. The
unstructured, additive uncertainty * obeys the relative,
additive uncertainty bound:

p6 (*( ju))

p6 (P( ju))
4d

ra
(u). (26)

Reeves (1991) uses d
ra

to specify the amount of uncertain-
ty to be tolerated. A necessary and su$cient condition
for RS is: there exists a controller that stabilizes all
P*"P#* with the same number of unstable poles as
P if and only if

p6 (P)p6 (P~1(I!S))(
1

d
ra

∀u. (27)

The nominal sensitivity S is de"ned in (6). In the set-up of
Fig. 5, S arises in tracking (r) and disturbance (d) rejection
problems. Performance speci"cations could thus be im-
posed in terms of S. Note that (27) depends on K via S,
while for IO selection a controller-independent criterion
is desirable. This can be achieved by transforming (27)
into a necessary condition. This involves some substitu-
tions. The following necessary condition for combined
RS and NP results: there exists a controller that stabilizes
all P* with the same number of unstable poles as P (RS)
and that achieves p6 (S)4p

S
, with p

S
(1 ∀u4u

S
(NP),

only if

i(P)(
1

d
ra

(1!p
S
)

∀u4u
S
. (28)

i(P)"1 for all 1]1 IO sets and so these cannot be
compared. Qualitatively, (28) states that for IO sets caus-
ing large plant condition numbers (1) only limited perfor-
mance (large p

S
and/or small u

S
) can be achieved and (2)

only small uncertainty (small d
ra

) is permitted. The sec-
ond part was already noted for unstructured, multiplica-
tive uncertainty in Section 3.4.3. Candidate IO sets that
do not meet (28) are rejected. However, IO sets may be
incorrectly accepted, due to necessity.

Banerjee and Arkun (1995) and Reeves (1991) use the
same d

ra
and p

S
for all candidate IO sets, implying the

right-hand side of (28) to be the same for all candidates.
However, from randomly generated matrices it was
observed that i(P) tends to increase if P is extended with
columns and rows. Hence, in terms of (28), achieving RS
and NP would become more di$cult if inputs and out-
puts were added and larger IO sets would be more easily
rejected. This is also illustrated by the examples in Baner-
jee and Arkun (1995), Hoskin, Nett, and Reeves (1991),
and Reeves (1991, Section 3.3). This counter-intuitive
result can be traced back to the unstructured uncertainty
representation: if an IO set is extended with inputs and
outputs, the dimension of * grows accordingly, introduc-
ing additional uncertainty associated with all inputs and

outputs. Such uncertainties are unlikely to occur in prac-
tice. To avoid this inconsistency when using (28),
d
ra

should be determined for each IO set separately.
Moreover, the NP speci"cation p

S
is directly related to

the outputs and using a distinct output set may call for
a distinct p

S
. However, these approaches to specifying

d
ra

and p
S

are infeasible for a large number of candidates.
Due to the assumption of inferential control, each of

the n
z

controlled variables must be represented by at
least one of the outputs y and the square IO sets should
at least have dimension n

z
]n

z
(Banerjee & Arkun, 1995).

Besides meeting (28), additional requirements are thus
imposed on the number and type of outputs. This must
be accounted for prior to checking (28), e.g., by physical
insight, which endangers the systematics and possibly the
e!ectiveness of the IO selection method. This drawback
applies to all IO selection methods assuming inferential
control.

In Reeves (1991), two lower bounds to the condition
number i(P) (in fact, to the minimum condition number
i8 (P) in (21)) are used: the "rst one, i" (P), is given by (20)
and the second one is (Nett & Manousiouthakis, 1987):

ip6 (P) :"p6 ("(P))4i8 (P)4i(P) (29)

with the RGA "(P) according to (19). Reeves (1991)
conjectures that i"(P) is generally closer to i8 (P) than
ip6 (P). Both bounds are independent of the IO scaling.
Replacing i(P) in (28) by either of the lower bounds
relaxes the IO selection condition and more IO sets may
be accepted. A reasonable motivation for introducing the
scaling-independent quantities is that IO selection with
(28) may give incorrect results if scaling is not or incor-
rectly performed. However, as noted before, appropriate
scaling, and hence dependence on scaling, is crucial for
a meaningful comparison of the variables on which un-
certainty and performance speci"cations are imposed, as
well as for the physical meaning of the variables. Accord-
ing to Reeves (1991), d

ra
and p

S
are speci"ed under the

assumption of proper scaling.

3.6.2. General control system set-up
The IO selection methods in this section use the set-up

in Fig. 6. The uncertainties * are isolated from the
nominal plant model G and w and z are split into parts
related to uncertainty (w

6
, z

6
) and performance (w

1
, z

1
).

Many control system set-ups (including those in Figs. 2,
4, and 5) can be cast into the set-up of Fig. 6. * may act
upon the plant in a multiplicative, additive, or many
other ways and it may be unstructured or structured.

Ross and Swartz (1997) consider combined RS and
NP. In Fig. 6, w and z are required to have bounded
amplitudes and the control problem is formulated in the
l
1

system norm setting. The uncertainties are treated as
nonlinear and/or time varying, which may be conserva-
tive if they are linear and time invariant. The perfor-
mance is in terms of minimizing tracking errors to
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Fig. 6. General control system set-up; plant G, controller K, and
uncertainty *.

setpoint changes. A controller-independent condition is
derived that could be used to check if, for a given IO set,
there exists any linear time-invariant controller meeting
NP and RS. For unstructured * (as for NP only), this test
involves solving a convex, constrained optimization
problem. For structured *, the optimization is not con-
vex and an approximation is invoked. The global opti-
mum may not be found, so the IO selection may not be
e!ective.

In Van de Wal and De Jager (1996) and Van de Wal
(1998, Section 4.1), an IO selection method is proposed
for separate or combined RS and NP. * is assumed to be
unstructured, linear, and time invariant. An H

=
control

problem is formulated, with the H
=

norm of a TFM H(s)
de"ned as

DDH(s)DD
=

:"sup
u

p6 (H( ju)). (30)

Weighting "lters imposing speci"cations on the uncer-
tainties and the exogenous and controlled variables are
incorporated into G. For a given IO set and correspond-
ing G, it can be checked whether there exists a stabilizing
controller achieving DDMDD

=
(c. Here, c is a speci"ed

value and M :"F
l
(G,K) is the nominal closed-loop sys-

tem, denoted as a lower linear fractional transformation
(Zhou et al., 1996, Chapter 10). This could be read as `G
closed by Ka. In case of RS (NP), w

1
and z

1
(w

6
and z

6
) in

Fig. 6 are absent and the H
=

norm requirement is
imposed on the relevant nominal closed-loop system
denoted by M

RS
(M

NP
). In case of combined RS and NP,

the H
=

norm requirement becomes DD[M
RS

M
NP

]DD
=
(c.

The IO selection method amounts to checking the set of
controller existence conditions proposed by Glover and
Doyle (1988). These involve requirements on the solu-
tions of two algebraic Riccati equations. For a given IO
set, the conditions are checked in succession, up to
failure. For IO selection aimed at RP or RS against
structured uncertainties, G can be modi"ed such that the
same method can be used, see Section 3.7.

In Van de Wal et al. (1997) and Van de Wal (1998,
Section 4.1), the IO selection method sketched above is

used for nonlinear systems via linearizations in a grid of
stationary operating points. For the nonlinear H

=
problem to be locally solvable, it is su$cient that the
corresponding linear H

=
problem is solvable (Van der

Schaft, 1996, Chapter 7). Due to this, IO sets may be
incorrectly rejected. On the other hand, for the nonlinear
H

=
problem to be globally solvable in the operating

region, it is necessary that the linear H
=

problems are
solvable for all equilibria. This is caused by the fact that
the sizes of the controllers' regions of attraction around
the equilibria are unknown during IO selection and may
not be large enough to overlap. Due to this, IO sets may
be incorrectly accepted. Nevertheless, the IO selection
method is useful for initial screening of many IO sets. The
IO sets accepted for the "rst operating point are checked
for the second operating point and so on, until all grid
points have been checked. If the number of accepted IO
sets is small enough, (nonlinear) controller design and
closed-loop evaluation could be invoked to rigorously
address IO set viability.

3.7. Robust performance

This section reviews IO selection methods and condi-
tions with RP as the selection criterion. As in Section 3.6,
methods for a one DOF control system set-up and
methods for the more general set-up of Fig. 6 are treated
separately.

3.7.1. One DOF control system set-up
The necessary conditions for IO selection in Braatz

(1993) and Braatz, Lee, and Morari (1996) and the neces-
sary conditions for secondary measurement selection in
Lee (1991) and Lee and Morari (1991) are derived in the
context of a particular controller design method. In
Braatz (1993, Chapter 6) this is robust loopshaping. This
technique is based on magnitude bounds for TFMs
which are of special interest and which are used to para-
meterize the controller (Skogestad & Morari, 1988). For
instance, for a tracking or disturbance rejection problem
in the set-up of Fig. 5, K could be parameterized in terms
of the sensitivity S in (6). If the RP control goal is
appropriately quanti"ed, the following is a necessary
condition for existence of a robustly performing control-
ler designed via loopshaping of S:

k(G
11

(0)#G
12

(0)P~1(0)G
21

(0))(1 (31)

with k the structured singular value of a matrix. A formal
de"nition of k can be found in many textbooks (Zhou
et al., 1996, Chapter 11). Here it su$ces to see k as an
extension of the maximum singular value p6 that permits
(structured) uncertainty characterizations and perfor-
mance speci"cations to be captured simultaneously and
nonconservatively. In (31), G

11
,G

12
, and G

21
correspond

to the partitioning of G in Fig. 6, while G
22

equals !P
in, e.g., Fig. 5. Condition (31) is thus applicable to control
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problems which are "rst formulated in a one DOF con-
trol system set-up and which, after de"ning w and z, are
transformed into the set-up of Fig. 6. Braatz (1993) and
Braatz et al. (1996) show that (31) is also necessary for
existence of an RP controller with integral action, i.e.
K(s)"(1/s)KK (s), with KK (0) nonsingular and S(0)"0.
Braatz et al. (1996) propose additional necessary condi-
tions in terms of k which can be used for joint IO and CC
selection. RP is actually a dynamic system property and
hence the steady-state condition (31) may not be very
useful for IO selection. Lee and Morari (1991) discuss
conditions which are in essence equivalent to (31), but
which are derived for loopshaping in estimation-based
inferential control systems where estimates of the
controlled variables are used. A TFM like S may not
be relevant for performance and other TFMs are used
instead. Application of all the above-mentioned IO selec-
tion conditions is restricted to square IO sets and steady
state.

Rivera (1989) speci"es NP in terms of magnitude con-
straints on the inputs u and on variables in z. The IO
selection method involves three steps: the candidates are
successively tested for (1) NP in terms of satisfaction of
the magnitude constraints (using p6 ), (2) RS for uncertain-
ties bounded by the H

=
norm (using k), and (3) satisfac-

tion of the constraints in the face of the uncertainties, i.e.,
RP (using k). The constraints cannot be incorporated
directly into the H

=
norm setting that is common for

RP. The L
1

system norm setting would be more appro-
priate for handling constraints. However, by employing
an inequality relating the H

=
and L

1
norm, Rivera

(1989) accounts for magnitude constraints, though pos-
sibly quite conservatively. The IO selection conditions
are restricted to steady state and square IO sets and they
assume integral control also in the presence of uncertain-
ty, i.e., S*(0)"0, with S* :"(I#(P#*)K)~1 for the
system in Fig. 5 with unstructured *.

In Trierweiler and Engell (1997) and Trierweiler (1997),
the `robust performance numbera 1 (P,¹

s
) is proposed as

a potential IO selection tool which is not restricted to
steady state. For a control system in the set-up of Fig. 2,
1 (P,¹

s
) is

1 (P,¹
s
) :"sup

u
Sp6 ((I!¹

s
)¹

s
)Ai8 (P)#

1

i8 (P)B. (32)

This measure is based on the k measure for RP in Zhou et
al. (1996, Section 11.3.3). The latter is valid in case of
a plant-inverting controller and the conservative, un-
structured, multiplicative input uncertainty in Fig. 4. The
k measure also involves the plant condition number i(P).
To reduce conservatism, Trierweiler and Engell (1997)
replace i(P) by the minimum plant condition number
i8 (P) in (21). In case of the less conservative, structured,
multiplicative input uncertainty, i8 (P) is more appropri-
ate, as illustrated by Chen et al. (1994). Furthermore, the
"rst term below the root in (32) replaces an expression in

the original k measure that represents the RS and NP
requirements. Here, ¹

s
is a specixcation for the com-

plementary sensitivity function that is de"ned as

¹(s) :"P(s)K(s)(I#P(s)K(s))~1"I!S(s). (33)

The choice of ¹
s

is determined by (1) the performance
speci"cations and (2) the occurrence of RHP zeros, RHP
poles, and time delays in P. Due to (2), the choice of ¹

s
is

not completely free, since closed-loop stability must be
guaranteed. Trierweiler and Engell (1997) state that
p6 ((I!¹)¹) is largest in the crossover region and so
1 (P,¹

s
) automatically emphasizes the frequency region

where suppressing the e!ect of uncertainties is usually the
most important. The IO sets yielding a small 1 (P,¹

s
) are

preferred, since these will give good RP if an inverse-
based controller `K"P~1a is used. Trierweiler and
Engell (1997) also propose an extension to 1 (P,¹

s
) that

applies to polytopic models, i.e., sets of linear system
models which together represent the original model. This
extension makes it possible to consider various types of
uncertainties explicitly and to examine nonlinear systems
with varying operating conditions. However, IO selec-
tion may be conservative if the nonlinear system is not
accurately described by the polytopic model.

Three drawbacks of IO selection with the RP number
1 (P,¹

s
) are mentioned. First, the derivation of 1 (P,¹

s
) is

mainly heuristic and lacks a sound theoretical founda-
tion. It seems an arbitrary combination of di!erent num-
bers, which makes 1 (P,¹

s
) di$cult to assess. Second, due

to the use of the condition number larger IO sets are
more likely to be eliminated (see Section 3.6) and in case
of the optimally scaled condition number the physical
meaning of the inputs and outputs of P may be lost.
Third, it may be necessary to re-compute ¹

s
for distinct

IO sets, e.g., if the RHP zeros are not the same for all IO
sets.

3.7.2. General control system set-up
Lee (1991, Chapter 3) suggests necessary conditions for

RP-based IO selection which are tied to LQG control
and model predictive control (MPC) or to integral con-
trollers. The conditions are in terms of a k bound on
weighted plant data. Their application is restricted to
square IO sets and steady state. This is circumvented for
the methods in the rest of this section, but these are
computationally more involved.

Consider Fig. 6 and denote the nominal closed-loop
system relating w to z by M. The upcoming IO selection
methods are posed in the H

=
system norm setting and

they aim at selecting those IO sets for which there exists
a stabilizing controller achieving RP or RS against struc-
tured uncertainties. The RP requirement is expressed as
a requirement on the k value of a TFM H(s), de"ned as

DDH(s)DDk :"sup
u

k(H( ju)). (34)
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Strictly speaking, DDHDDk is not a norm. In contrast to the
H

=
norm requirement DDMDD

=
(c, there is no set of

conditions that can be used to verify whether there exists
a stabilizing controller achieving DDMDDk(c. Controller
design aimed at minimizing DDMDDk or achieving a particu-
lar value of DDMDDk could be invoked instead. This
k-synthesis problem is still unresolved, but an approxim-
ate design, called D}K iteration (Zhou et al., 1996, Chap-
ter 11), is possible. The aim is to make the following
k upper bound small enough:

DDH(s)DDk6 :"sup
u

k6 (H( ju))5DDH(s)DDk (35)

with

k6 (H( ju)) :" inf
D( +u)

p6 (D( ju)H( ju)D~1( ju)). (36)

The D-scales D( ju) belong to a set determined by the
structure of * (Zhou et al., 1996, Chapter 11). For nota-
tional simplicity, it is assumed in (36) that each individual
block in * is square and that w

1
and z

1
have the same

dimension. Each iterative step in D}K iteration
alternates between computing k6 (M) and the D-scales for
a frequency grid, "tting a TFM through D( ju), and
performing an H

=
optimization of G augmented with

the D-scale approximations. The iteration could be stop-
ped if DDMDDk6 is small enough or does not further converge.
This is the basic idea of IO selection in Van de Wal (1998,
Section 6.6). The IO selection method in De Jager, Van
de Wal, and Kamidi (1998) combines D}K iteration with
H

=
controller existence checks (Section 3.6.2) for

a scaled plant. Due to the fact that achieving DDMDDk6 (c is
su$cient for achieving DDMDDk(c, IO sets may be incor-
rectly rejected. The methods in the remainder of this
section circumvent the time-consuming D}K iterations
for distinct candidate IO sets, at the price of reduced
e!ectiveness.

The starting point for the IO selection method pro-
posed by Lee, Braatz, Morari, and Packard (1995) is to
check whether there exists a stabilizing controller achiev-
ing DDMDDk6 (c. To arrive at controller-independent IO
selection conditions, the requirement of the controller
being stabilizing is dropped, which is equivalent to drop-
ping the controller's causality. According to Lee et al.
(1995), the consequences are only signi"cant in the cross-
over region, where joint stability and performance re-
quirements are especially di$cult to be met. Note that
dropping the stabilizing property amounts to dropping
the interdependence of gain and phase as imposed by
Bode's gain-phase relationships: the performance speci-
"cations, expressed as magnitude requirements, are more
easily met if the phase requirements can be neglected. The
IO selection conditions are in terms of two LMIs that
must be jointly feasible across frequency. Neglecting cru-
cial frequencies in the grid is another source of necessity.

Only for a few special cases, like RP with unstructured *,
checking the joint feasibility of the LMIs is convex. For
more general cases, only the feasibility of the individual
LMIs can be checked. This implies that the input (out-
put) set is checked under the assumption of a perfect
output (input) set, but that the combination of the actual
input and output sets cannot be checked. The pros and
cons of this IO selection method are discussed in more
detail by Van de Wal, Philips, and De Jager (1998).

The last two methods to be reviewed reduce the struc-
tured RP problem to an unstructured one, such that
H

=
controller existence conditions can be used for IO

selection, as in Section 3.6.2. Both methods proceed
along four steps that are mainly the same: (1) D}K
iteration for the full IO set until DDMDDk6 does not further
decrease, (2) k-analysis for the full IO set's optimal
closed-loop system and generation of particular TFMs to
be used in the next step, (3) modi"cation of the candidate
IO sets' plants G with these TFMs, and (4) subjecting the
modi"ed plants to the H

=
controller existence condi-

tions. The two IO selection methods use di!erent TFMs
in the second step. For both methods, using the TFMs
related to the full IO set also for the other IO sets is based
on the assumption that these TFMs are representative
for IO sets which are almost as good as the full one.

The "rst method is described in Van de Wal (1998,
Section 4.2.1) and Van de Wal and De Jager (1997). As in
D}K iteration, G is augmented with approximations of
the D-scale data resulting from the k upper bound com-
putation. These TFMs, called `D-scale estimatesa, are
constructed for the full IO set, but they are also used for
the other IO sets. The D-scale estimates may not be
optimal for other IO sets than the full one, which is the
main reason for the su$ciency of this method. So, IO sets
may be incorrectly rejected. The second method is de-
scribed in Van de Wal (1998, Section 4.2.2) and Van de
Wal and De Jager (1998). A particular TFM *) (s), repres-
enting an uncertainty, is absorbed into G for the distinct
candidate IO sets. The magnitude of *) is such that the
RP level of the full IO set's optimal closed-loop system is
just violated, at least for one frequency, and therefore it is
called a `worst case uncertaintya. This method has a ne-
cessary character and IO sets may be incorrectly accep-
ted. This is mainly due to two sources. First, *) is not
necessarily worst case for all frequencies. Second, even if
it is, it may not be worst case for other IO sets than the
full one for which it was constructed.

3.8. Search methods

Most IO selection criteria discussed are evaluated on
a per candidate basis, so worst case all IO sets have to be
checked. This implies an exhaustive search for a number
of combinations that grows exponentially with N

u
#N

y
,

which is practically intractable and ine$cient. As will
appear below, to avoid the combinatorial nature of the
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problem, in general one has to make a compromise,
either in the choice of the selection criterion or in the
choice of the search strategy.

The computational e!ort can be reduced signi"cantly
by realizing that often it is not necessary to check all
candidate IO sets to discriminate viable from nonviable
IO sets. For many IO selection problem formulations,
the following two dual properties hold: (A) eliminating
inputs and/or outputs does not improve control and (B)
adding inputs and/or outputs does not worsen control.
Realizing this, subsets (supersets) of nonviable (viable) IO
sets need not be checked, but can directly be termed
nonviable (viable). The validity of (A) or (B) depends on
the considered system and the IO selection criterion. For
instance, the properties may not apply if there are candi-
date actuators and sensors a!ecting the open-loop dy-
namics or if the IO selection criterion involves the plant's
condition number.

Properties (A) or (B) can form the basis of a strategy of
going through the candidate IO sets. Such a strategy is
discussed by De Jager and Toker (1998). It is based on
a novel algorithm to generate all maximal-independent
or minimal-dependent sets, a standard problem in com-
binatorial optimization. The problem is still NP-hard,
i.e., there is no solution possible in polynomial time,
although in practice (for N

u
#N

y
not too large) the com-

puting time is polynomial in N
u
#N

y
and in the number

of IO sets that characterize the complete solution. An
example using a k-based RP criterion for a problem with
N

u
#N

y
"28 has shown the algorithm to reduce signi"-

cantly, i.e., by a factor 10~6, the number of IO sets to be
checked, compared to an exhaustive search (De Jager
et al., 1998).

The algorithm proposed by De Jager and Toker (1998)
generates all minimal dependent sets, i.e., sets that are
viable but whose subsets are all nonviable. These IO sets
do not contain redundant actuators or sensors. If any
device fails, even if the failure is detected and the control-
ler changed accordingly, the performance will be below
par. But, (1) redundancy aspects can be built into the
selection criterion and (2) combining two disjunct minim-
al IO sets will protect against single-device failures. The
results are therefore also useful for adding fault-tolerance
to a system. Contained in the minimal-dependent sets are
sets with the smallest number of devices: the minimum-
dependent sets. By providing all minimal-dependent sets
(not only the smallest ones) the designer is given full
information about the performance structure. He can use
this knowledge to attend to aspects not included in the
selection criterion and can limit a further search for an
optimal IO set to the minimal-dependent sets.

Another approach to avoid exhaustive testing on
a candidate-by-candidate basis is by using optimization.
The minimal-dependent set algorithm generates all sets
that meet a certain constraint using the selection cri-
terion. Adding an optimization criterion to the constraint

may yield a unique solution. Several algorithms in
combinatorial optimization can be employed (Aarts
& Lenstra, 1997). Hassibi, How, and Boyd (1998)
combine an L

1
norm optimization criterion on the

controller coe$cients with other design constraints. For
closed-loop pole region constraints, this yields a linear
programming problem that can be solved e$ciently. If
controller coe$cients tend to be zero, it may be possible
that some actuators and sensors are not used. This
method combines IO and CC selection. It gives an ap-
proximate solution to a combinatorial optimization
problem. It is not guaranteed to generate one of the
optimum solutions with the lowest number of devices,
but it may end up with a solution close to the optimal
ones. It has the advantage of being very e$cient, because
it is a direct method and uses a simple convex optimiza-
tion routine.

4. Applications of IO selection methods

This section illustrates that systematic IO selection is
important for a wide variety of applications. For most
references and applications, the employed IO selection
method is assigned to one of the main groups in Sec-
tion 3. Sometimes the method is application-speci"c and
then it is not further characterized.

4.1. Process control

Systematic IO selection is important for systems with
a large number of candidate inputs and outputs. There-
fore, most literature on IO selection is related to the
large-scale systems from process industry. Applications
of all selection criteria in Sections 3.1}3.7 are encoun-
tered. The majority of the applications is based on IO
controllability measures, since especially for the systems
in process industry with many candidate IO sets simple
criteria are preferred. The IO controllability measures
are easily computed and well understood. They are also
well suited to focus on a tight frequency range or a single
frequency. Steady-state performance is crucial in process
industry and so many IO controllability measures are
studied for frequency zero. More rigorous IO selection
criteria are often applied in a later stage when the number
of candidates has already been reduced considerably.

4.1.1. Individual units
For individual units, the following IO selection applica-

tions are encountered:
Distillation columns: This application is often

encountered:

f The selection of the number and placement of temper-
ature sensors in Bequette and Edgar (1986, IO control-
lability), Chang and Yu (1990, IO controllability),
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Havre et al. (1996, IO controllability), Joseph and
Brosilow (1978, IO controllability, e$ciency of manip-
ulation and estimation), Lee (1991, Section 3.5 and
Appendix B.3.3, e$ciency of manipulation and estima-
tion, IO controllability, RP), Lee and Morari (1991,
RP), Lee et al. (1995, RP), and Morari and
Stephanopoulos (1980b, e$ciency of manipulation
and estimation).

f The selection of the placement and type of sensors in
Moore et al. (1987, IO controllability).

f Input selection in Cao (1995, Section 5.5, IO controlla-
bility), Figueroa, Romagnoli, and Barton (1992, RP),
Morari and Stephanopoulos (1980a, state controllabil-
ity and observability), Rivera (1989, NP, RS, RP),
Rivera et al. (1993, IO controllability, NP, RS, RP),
and Skogestad and Morari (1987b, IO controllability).

f IO selection in Hansen, Heath and J+rgensen (1996,
RHP zeros, IO controllability) and in Yu and Luyben
(1986, IO controllability).

Recalling the broad interpretation of inputs in the intro-
duction of this paper, it is noteworthy that in Hansen,
Heath, and J+rgensen (1996) two candidate inputs are
setpoint variables instead of physically actuated vari-
ables.

Tubular reactors: The optimal location of temperature
and concentration sensors in Kumar and Seinfeld (1978,
e$ciency of manipulation and estimation).

Boilers: Input selection in Keller and Bonvin (1987, IO
controllability).

Mixer-blenders: IO selection in Morari and Stephano-
poulos (1980a, state controllability and observability).

4.1.2. Small-scale integrated plants
For small-scale integrated plants, the following applica-

tions are mentioned:
FCC: Hovd and Skogestad (1993, RHP zeros) and

Morari and Stephanopoulos (1980b, e$ciency of manip-
ulation and estimation) select temperature sensor sets for
a #uid catalytic cracker (three units).

CSTR: Input selection for a series connection of two
continuous stirred tank reactors and an intermediate
mixer is considered in Cao (1995, IO controllability,
e$ciency of manipulation and estimation), Cao et al.
(1996, e$ciency of manipulation and estimation) and,
without a mixer, in Daoutidis and Kravaris (1992, acces-
sibility).

HID: Weitz and Lewin (1996, IO controllability) study
input selection for two heat-integrated distillation columns.

DEE: Double-e!ect evaporators, i.e., two evaporators
in series, are considered in Heath, Perkins, and Walsh
(1996, IO controllability) and Narraway and Perkins
(1993, IO controllability), where both inputs and outputs
are selected, and in Morari and Stephanopoulos (1980b,
e$ciency of manipulation and estimation), where only
outputs are selected.

MDHE: Govind and Powers (1982, accessibility) focus
on IO selection for the combination of a mixer, a divider,
and a heat exchanger.

HE: For a network of heat exchangers, Daoutidis and
Kravaris (1992, accessibility) perform input selection and
Reeves (1991, Section 3.3, combined RS and NP)
performs IO selection.

4.1.3. Large-scale integrated plants
For large-scale integrated plants, the following applica-

tions can be found:
HDT: In Cao (1995, Chapter 7, RHP zeros, IO control-

lability), Cao and Biss (1996, IO controllability), and Cao
and Rossiter (1996, IO controllability), inputs are se-
lected for the hydrodealkylation of toluene process (ten
units), while in Cao, Rossiter, and Owens (1997, IO
controllability) outputs are selected for this process.

TEP: Banerjee and Arkun (1995, combined RS and
NP) perform IO selection for the Tennessee}Eastman
plant ("ve units).

WOP: Morari and Stephanopoulos (1980a, state con-
trollability and observability) perform IO selection for
the Williams}Otto plant (four units).

TID: In Lin et al. (1994, state controllability and ob-
servability), IO selection is applied for a thermally integ-
rated distillation sequence (16 units).

FFC: In Narraway and Perkins (1993, IO controllabil-
ity) this is done for a froth #otation circuit in mining
industry.

Finally, Luyben, TyreH us, and Luyben (1998) suggest
approaches for designing regulatory control structures
for plantwide control problems. The Tennessee}Eastman
plant, the HDA process, the isomerization process, and
the vinyl acetate process serve as examples (individual
units, such as reactors, heat exchangers, and distillation
columns, are also discussed). Unlike the system-theoretic
approaches that are the focus in this review, the approach
by Luyben et al. (1998) relies completely on engineering
heuristics, experience, and features that are unique for the
considered problems.

4.2. Flexible structures

Control of #exible mechanical structures is another
"eld where IO selection attracts much attention. Only
part of the literature is referred to below. The selection
methods are always based on quantitative measures for
state controllability/observability or e$ciency of manip-
ulation/estimation. These measures lend themselves well
to express the energy contained in a system's state, input,
and output vector. Limitation of the energy stored in or
supplied to a #exible system is an important performance
indicator in the "eld of vibration reduction. Moreover,
the well described and speci"c nature of the problem (e.g.,
the plants are usually stable and linear with complex
poles and small damping factors) sometimes makes it
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possible to simplify the IO selection problem and to
derive accurate approximate expressions for the e!ect of
each candidate actuator and sensor.

Unlike most other applications, the number of candi-
date actuator and sensor locations is not always "nite.
Optimization algorithms can be invoked to "nd the opti-
mal locations. Moreover, distributed actuators and sen-
sors (like piezoelectric layers) are often applied, instead of
the more common point actuators and sensors. Selecting
among distributed actuators and sensors also involves
decisions on the geometry:

f For point actuators and sensors, IO selection for
a "nite number of candidates is the topic in Andersson
(1997), Balas and Young (1999, e$ciency of estima-
tion), Gawronski and Lim (1996, state controllability
and observability), Georges (1995, state controllability
and observability), HacH and Liu (1993, state controlla-
bility and observability), Lim (1997, state controllabil-
ity and observability), Norris and Skelton (1989,
e$ciency of manipulation and estimation), Roh
and Park (1997, e$ciency of manipulation and esti-
mation), Seto and Mitsuta (1994), and Vander Velde
and Carignan (1984, state controllability and ob-
servability).

f IO selection for an in"nite number of candidates is
discussed in Lee and Chen (1994, e$ciency of manip-
ulation and estimation) and Xu et al. (1994, e$ciency
of manipulation and estimation).

f Selection of (single) distributed actuators and sensors
is considered by HacH (1995, state controllability and
observability) and Ko et al. (1994, state controllability
and observability).

4.3. Flight control

Specialized IO selection methods have also been used
for aircraft and spacecraft control purposes. There is no
method that is clearly used the most frequently. Based on
the complexity and the nature of the control problem, the
preferred IO selection method should be considered for
each application separately. For a process-control-like
problem (e.g., controlling #uids, temperatures, and
pressures in engines) IO controllability measures are
a suitable starting point, whereas state controllability
and observability and e$ciency of manipulation and
estimation may be preferred for mechanical structures
(e.g., active vibration control of wings and antennas). The
following applications of #ight control are encountered:

f Hoskin et al. (1991, combined RS and NP), Reeves
(1991, Section 7.2, combined RS and NP), and Samar
and Postlethwaite (1994, state controllability and ob-
servability, RHP zeros, IO controllability) determine
suitable actuators and sensors for controlling high-
performance aircraft engines.

f Compressors are often used in aircraft engines and, in
this context, IO selection for compression systems
could also be mentioned, see Hendricks and Gysling
(1994), Montazeri-Gh, Allerton, and Elder (1996,
e$ciency of manipulation and estimation), Simon,
Valavani, Epstein, and Greitzer (1993), and Van de
Wal et al. (1997, combined RS and NP).

f The optimal location of actuators for attitude control
of satellites is considered by MuK ller and Weber (1972,
state controllability and observability).

4.4. Other applications

Some other IO selection applications that do not be-
long to any of the categories discussed above are listed
below:

f Braatz et al. (1996, RP) consider actuator placement
for a paper machine.

f IO selection for active suspensions is studied by
Al-Sulaiman and Zaman (1994, e$ciency of manipula-
tion), De Jager et al. (1998, RP), Van de Wal et al.
(1998, RP), Van de Wal and De Jager (1996, combined
RS, and NP) Van de Wal and De Jager (1998, RP), and
Van de Wal and De Jager (1997, RP).

f Demetriou and Fahroo (1999, e$ciency of manipula-
tion), Katsikas, Tsahalis, Manolas, and Xanthakis
(1995), and Ruckman and Fuller (1995) study actuator
placement for active noise control.

f Kosut and Kabuli (1995) focus on IO selection for
a thermal processing chamber.

5. A bird's eye view on IO selection

Based on the desirable properties in Section 2, the IO
selection methods reviewed in this paper are assessed and
compared to obtain insight into the state of the art in IO
selection. This gives rise to some suggestions for further
research.

5.1. Qualitative assessment of IO selection methods

The assessment is qualitative and certainly not de"nit-
ive, since this would call for a comparative, quantitative
set of examples or a benchmark competition. The
desirable properties in Section 2 form the basis for
the evaluation. The extent to which the methods ful"ll
the properties is expressed by these symbols in Table 1:

#: The method exhibits this property to a satisfactory
extent.

0: The method exhibits this property to a moderate
extent.

!:The method does not exhibit this property, or only to
a minor extent.
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Table 1
Qualitative assessment of the reviewed classes of IO selection methods

Section IO selection criterion Desirable properties of IO selection methods

1 2 3 4 5 6 7 8 Q

3.1 Accessibility # # # # ! ! # ! 7.1
3.2 State controllability & observability # # # # ! 0 # ! 7.6
3.3 Right half-plane zeros # # 0 0 ! # # ! 6.8
3.4 IO controllability 0 # ! 0 0 # # 0 5.9
3.5 E$ciency of manipulation & estimation 0 0 0 # # # ! ! 6.2
3.6 Robust stability & nominal performance 0 0 0 0 # # # ! 6.2
3.7 Robust performance 0 0 ! 0 # # 0 ! 5.0
3.8 Search methods & robust performance (k) # 0 # # # # 0 0 8.5

Table 1 also provides a quality indicator Q for each group
of IO selection methods. The eight desirable properties of
IO selection were ranked according to descending im-
portance. The following weights W are assigned to each
property: W"3 for Properties 1}3, W"2 for Proper-
ties 4}6, and W"1 for Properties 7 and 8. If a property
is assigned the symbol #, W is multiplied by #1, if it is
assigned 0, W is multiplied by 0, and if it is assigned
!, W is multiplied by !1. By averaging, scaling, and
translating, Q then takes a value between 0 and 10. The
ranking of the desirable properties is partially subjective
and problem-dependent. So, Q only gives a rough indica-
tion of what to expect from each method.

Table 1 gives a fairly complete picture of the currently
known IO selection methods and their pros and cons.
Clearly, all methods show shortcomings and the develop-
ment of an IO selection method resolving all shortcom-
ings is probably too ambitious. The most remarkable
issues in Table 1 are now discussed, following the order of
the eight desirable properties of IO selection methods:

1. Well founded: Most IO selection methods lack
a sound theoretical foundation. The method based on
combined RS and NP (Reeves, 1991) uses the same per-
formance and uncertainty speci"cations for all IO sets,
but the assumption of unstructured uncertainty requires
that the uncertainty quanti"cation is reconsidered for
each IO set. It seems as if for some IO selection methods
the plant's condition number is quite arbitrarily applied
as a robustness indicator, without noting that this implies
a type of uncertainty which may not be appropriate. For
the RP-based IO selection methods that reduce the con-
trol problem to an unstructured one, the theoretical
foundation is moderate, since it partially relies on an
engineering heuristic and no immediate prospects are
foreseen for a theory in support of this heuristic. For the
IO controllability measures, some of the de"nitions seem
to con#ict with the actually intended objectives.

2. Ezcient: Regarding computational ewort, the
methods aimed at RP and e$ciency of manipulation and
estimation involve computations which require more
e!ort than, e.g., computation of the IO controllability

measures. When a k-based RP criterion is used, D}K
iteration is required. Due to the search method
employed, the e$ciency of the RP-based approach in
Section 3.8 could be termed moderate. Regarding analyti-
cal ewort, a less rigorous IO selection criterion usually
requires less details and hence less analytical e!ort. For
instance, the method based on accessibility only involves
structural system data, whereas the methods based on
RP require numerical data of the plant, the disturbances,
and the uncertainties, as well as detailed performance
speci"cations.

3. Ewective: Many IO controllability measures are
only crude representations of the actual objectives. The
e!ectiveness of IO selection is then inherently poor. The
methods based on RP and the method based on com-
bined RS and NP proposed by Reeves (1991) rely on
either necessary or su$cient conditions and IO sets may
be incorrectly accepted or rejected. Apart from the least
rigorous IO selection methods, e$ciency and e!ec-
tiveness do not go well together. Controller design be-
comes inevitable for an e!ective and rigorous IO
selection, as illustrated by, e.g., the RP-based method
involving k-synthesis. The number of controller designs
can be reduced in the last case, because only existence
conditions for a (suboptimal) controller need to be
checked.

4. Generally applicable: Section 3.4 shows that numer-
ous IO selection conditions can be derived from the IO
controllability measures. Most measures are developed
for a one DOF control system set-up, which limits the
general applicability. Usually, it is then assumed that the
measured variables (outputs) properly represent the con-
trolled variables, such that performance speci"cations
can be imposed on the outputs. This is also assumed for
most IO selection methods based on RHP zeros and
some of the methods based on RP or combined RS and
NP. Accessibility can be checked for nonlinear control
systems, while state controllability and observability
have also been extended to nonlinear systems (Nijmeijer
& Van der Schaft, 1990, Chapter 3). This also holds for
RHP zeros: unstable zero dynamics of a nonlinear system
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plays a similar role to that of RHP zeros (Isidori, 1995,
Section 4.3). For other IO selection methods, generaliz-
ations to nonlinear systems may also be possible.

5. Rigorous: A major disadvantage of the methods
based on accessibility and state controllability/observ-
ability is the lack of rigor. The individual IO controllabil-
ity measures do not address IO set viability very
rigorously either, but this can be improved by sequential
IO selections for distinct IO controllability measures.
The RP-based IO selection methods are the most rigor-
ous, though this is disputable for the methods that only
apply at steady state. RP still neglects some important
issues in control system design, like good reliability and
low costs of purchasing, operating, and maintaining
a control system. These issues could be used for the
ultimate decision on which IO set is going to be imple-
mented.

6. Quantitative: The majority of the IO selection
methods employ quantitative criteria. Exceptions are
structural state controllability and observability. For
accessibility, the relative degree is a possible quan-
ti"cation, but in general it is not rigorous enough to
indicate whether the intended control goal can be
achieved.

7. Controller independent: Some methods based on e$-
ciency of manipulation and estimation assume static
state-feedback or output-feedback control, or static es-
timation, while some of the RP-based methods assume
integral control, LQG control, MPC, or D}K iteration.
To avoid controller dependence, most methods based on
IO controllability assume perfect control, whereas some
methods based on RP or combined RS and NP check the
existence of any "nite-dimensional, linear, time-invariant,
and stabilizing controller achieving a speci"ed norm
bound of the closed-loop system.

8. Direct: Some IO controllability measures provide
prospects for direct IO selection. They are computed
only once, namely for the full IO set. The naturally
occurring exponential growth of the IO selection prob-
lem is then avoided. None of these direct, often heuristic,
methods are guaranteed to be e!ective. Checking the IO
selection criteria on an indirect candidate-by-candidate
basis is often suggested, but it may not be necessary to
check all candidates, see Section 3.8.

It would be useful to have a practical guideline for
choosing the `righta approach to IO selection. This
should be a well-motivated one. A general guideline for
picking the `righta approach to IO selection is hard to
give. For a problem with a large number of candidate IO
sets, IO selection may proceed by sequentially applying
IO selection methods with gradually increasing rigor and
hence the number of candidate IO sets is reduced grad-
ually. Proposals for systematic, sequential IO selection
procedures are given by, e.g., (from less detailed to more
detailed) Lee (1991, Chapter 3), Trierweiler (1997, Chap-
ter 2), and Van de Wal (1998, Chapter 7).

5.2. Directions for future research

Besides performance, other issues in IO selection are
control system complexity and costs. An obvious way to
perform IO selection is to "rst eliminate the candidate IO
sets that cannot achieve the intended control objectives
and then to assess control system complexity and costs to
make the ultimate decision on the IO set. Future research
should pay attention to the development of IO selection
methods which better integrate these issues. Whereas
addressing control system complexity and costs may not
always call for system-theoretic concepts, addressing
control objectives does. The developments in the "eld of
LMIs have increased the possibilities to address control
objectives in a more rigorous and general way.

Only a few IO selection methods are readily applicable
to nonlinear systems. Two categories can be distin-
guished: methods that do require a linearized plant
model and methods that do not. IO selection based on
a linear model is the easiest and most e$cient. However,
it may be ine!ective, since the nonlinear plant may loose
desirable properties due to linearization, like controll-
ability. For nonlinear systems that operate close to
equilibria, methods for linear systems are quite useful,
especially for initial screening. The conclusions on IO set
viability are then valid locally around each investigated
equilibrium, but the size of this region is not known at the
stage of IO selection. To guarantee a certain size of the
region, the linearization errors in a prescribed region
around an equilibrium could be treated as uncertainties
and the IO selection methods based on RS or RP could
be applied. The development of IO selection methods
that do not require linearization is a wide open "eld.
Some of the selection criteria that have a nonlinear
equivalent have already been mentioned in the assess-
ment of general applicability in Section 5.1.
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